九年级上册初中数学专项练习212524十大题型垂径定理
9年级数学上册专项
9数学综合检测下载
数学试卷介绍
本资源为9数学综合检测,提供免费下载服务。数学试卷包含完整题目和答案解析,适合9学生使用。
文档预览(前 3 页)
💡 提示:此为 PDF/Word 转换的 HTML 预览,部分格式可能与原文档略有差异
垂径定理-十大题型
【知识点1 垂径定理及其推论】
(1)垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
(2)垂径定理的推论
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
【题型1 利用垂径定理求线段长度】
【例1】(雨花区校级开学)如图,⊙O的半径OD⊥弦AB交AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,EC=2,则CD的长为( )
A.1 B.3 C.2 D.4
【变式1-1】(宁津县二模)如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为( )
A.6 B. C.8 D.
【变式1-2】(建华区二模)如图,⊙O的直径AB与弦CD相交于点E,若AE=5,EB=1,∠AEC=30°,则CD的长为( )
A.5 B.2 C.4 D.
【变式1-3】(徐汇区校级期中)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,且CE=CB,若BE=2AE,CD=5,那么⊙O的半径为 .
【题型2 利用垂径定理求角度】
【例2】(泰安模拟)如图,⊙O的半径OA,OB,且OA⊥OB,连接AB.现在⊙O上找一点C,使OA2+AB2=BC2,则∠OAC的度数为( )
A.15°或75° B.20°或70° C.20° D.30°
【变式2-1】(天心区期中)如图,已知⊙O半径OA=4,点B为圆上的一点,点C为劣弧上的一动点,CD⊥OA,CE⊥OB,连接DE,要使DE取得最大值,则∠AOB等于( )
A.60° B.90° C.120° D.135°
【变式2-2】(青田县期末)如图,在⊙O中,半径OC过弦AB的中点E,OC=2,OE.
(1)求弦AB的长;
(2)求∠CAB的度数.
【变式2-3】(开州区期末)如图,在⊙O中,弦BC与半径OA垂直于点D,连接AB、AC.点E为AC的中点,连接DE.
(1)若AB=6,求DE的长;
(2)若∠BAC=100°,求∠CDE的度数.
【题型3 利用垂径定理求最值】
【例3】(威海模拟)⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是( )
A. B.1 C. D.2
【变式3-1】(河北模拟)如图所示,在⊙O中,AB为弦,OC⊥AB交AB于点D.且OD=DC.P为⊙O上任意一点,连接PA,PB,若⊙O的半径为1,则 S△PAB的最大值为( )
A.1 B. C. D.
【变式3-2】(龙凤区校级期末)如图,矩形ABCD中,AB=20,AD=15,P,Q分别是AB,AD边上的动点,PQ=16,以PQ为直径的⊙O与BD交于点M,N,则MN的最大值为 .
【变式3-3】(延平区校级期末)在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为( )
...(仅显示前约 3 页内容)
📄 已显示数学试卷前 3 页内容,完整9数学综合检测请点击上方按钮免费下载